
Internet-of-Things
Communications

Lasse Berntzen

University of South-Eastern Norway



Prototyping with Arduino – Chapter #9

• Understanding infrared communications

• Hacking into an existing remote control

• Building an Infrared receiver device

• Using IR receiver TSOP1738/TSOP1838

• Using IR receiver SM0038

• Building an Infrared transmitter device

• Using IR transmitter LED

• Controlling Arduino projects



Understanding Infrared Communications

• Infrared light, Visible light, Ultraviolet light

• A transmitting device (transmitter LED + microcontroller)

• A receiving device (receiver unit + microcontroller)



Infrared Communication Frequency

• The most common frequency to transmit IR signals is 38 KHz (Kilo 
Hertz), in other words, the IR LED will be triggered 38,000 times in 1 
second by the microcontroller. 

• In response to the microcontroller pulses, the IR LED will also emit 
quick and short IR waves 38,000 times in 1 second. 

• These 38,000 IR waves will be carried through the air and received by 
the IR receiver hardware.



Infrared Communication Protocol

Several infrared 
communication 
protocols

CONSUMER 
INFRARED (CIR)

Used by many 
remote controllers 
(but not all)

Some remote 
controllers use radio 
signals

Different 
manufacturers has 
their own protocols

Lack of 
standardization



Hacking Into an 
Existing Remote 
Control

What we will do in this lecture:

Using IR receiver TSOP Series IR 
receivers

Building an infrared transmitter 
device

Transfer data from one Arduino to 
another Arduino

Transfer data from Arduino to 
ESP8266



Building an 
Infrared 
Receiver 

Device

One Arduino Uno R3 with 
USB cable

One IR receiver (TSOP family 
of IR receivers) module

Male-to-male jumper wires



The 
Arduino 
Infrared 
Library

• We need to replace the IRremote
library delivered with Arduino

• The built-in library does not 
support Consumer InfraRed (CIR)



The Arduino 
Infrared 
Library



Using IR Receiver TSOP 
Series IR receivers



The IR Sensor 
Card

• S = Signal

• - = Gnd

• Middle pin = +5V



The IR Sensor Card

Description:

• Infrared receiving module adopts 1838 infrared receiving head
Light resistance, strong electromagnetic interference, built-in infrared dedicated 
IC, can work under 500 lux light intensity

• Widely used in: stereo, TV, video machine, disc machine, set-top boxes, digital 
photo frame, car stereo, remote control toys, satellite receivers, hard disk player, 
air conditioner, heater, electric fan, lighting and other home appliances

Specification:

Dimension: 6.4 x 7.4 x 5.1mm
Receiving angle: 90 °
Working voltage: 2.7 ~ 5.5V
Frequency: 37.9KHz
Receiving range: 18m



The IR 
Sensor 

Card

• S: This is the output pin of the IR receiver. This 
pin is connected to a microcontroller unit. The IR 
receiver sends the decoded IR signal through 
this pin. In our case, this pin will be connected to 
the Arduino board (Pin 11). 

• Our Arduino sketch will read the decoded IR 
signal from this pin.

• GND (-): This pin will be connected to the ground 
pin of the Arduino board.

• 5V: this pin will be connected to the 5 volt 
power supply pin of the Arduino.



Schematic 
From the 
Book



Examples in 
the Library



The circuit

LED
Cathode to GND (shorter leg)
Anode to 220 Ohm resistor
220 Ohm resistor to D2

IR RECEIVER
S to D11
Vcc to 5V (middle pin)
GND to GND



Sketch (1)

// This sketch has been modified based on the original sketch

// written by Ken Shirriff

#include <IRremote.h>

#define RECV_PIN 11 //Pin for IR-receiver

IRrecv irrecv(RECV_PIN); // Create IRrecv object

decode_results results;  // Create object to store results



Sketch (2)

void setup()

{

irrecv.enableIRIn();   // Start the receiver

Serial.begin(9600);    // Start serial communications

delay(2000);

Serial.println("Infrared Receiver Started...");

pinMode(2,OUTPUT);     // Connect LED to GPIO2

digitalWrite(2, LOW);  // Turn LED of from beginning

}



Sketch (3)

void loop()

{

if (irrecv.decode(&results))

{

Serial.println(results.value, HEX);

if (results.value == 0xFE808A75) {digitalWrite(2, HIGH);}

if (results.value == 0xFE804AB5) {digitalWrite(2, LOW);}

irrecv.resume(); // Receive the next value

}

}



Example of 
output from 
serial 
monitor



Prototype in practical use

This is a small video demonstration 
where a remote control is used to 
turn a LED on and off.



Detect remote control type

The library has the ability to detect 
different kinds of manufacturer controls.

Sometimes a manufacturer uses the 
standard of another manufacturer.

E.g., my Yamaha receiver is detected as NEC



Detect remote control type

#include "IRremote.h" 

IRrecv irrecv(RECV_PIN); 

decode_results results;

void setup(){ 

Serial.begin(9600); 

irrecv.enableIRIn(); 

}



Detect remote control type

void loop(){ 

if (irrecv.decode(&results)){ 

switch (results.decode_type){ 

case NEC: Serial.println("NEC"); break ; 

case SONY: Serial.println("SONY"); break ; 

case RC5: Serial.println("RC5"); break ; 

case RC6: Serial.println("RC6"); break ; 

case DISH: Serial.println("DISH"); break ; 

case SHARP: Serial.println("SHARP"); break ; 

case JVC: Serial.println("JVC"); break ; 

case SANYO: Serial.println("SANYO"); break ; 



Detect remote control type

case MITSUBISHI: Serial.println("MITSUBISHI"); break ; 

case SAMSUNG: Serial.println("SAMSUNG"); break ;

case LG: Serial.println("LG"); break ; 

case WHYNTER: Serial.println("WHYNTER"); break ; 

case AIWA_RC_T501: Serial.println("AIWA_RC_T501"); break ; 

case PANASONIC: Serial.println("PANASONIC"); break ; 

case DENON: Serial.println("DENON"); break ; 

default: 

case UNKNOWN: Serial.println("UNKNOWN"); break ; } 

irrecv.resume(); } 

}



Detect 
remote 
control type



Specifications

• Supply voltage: 5V

• Working environment: -25~+85°C

• Storage temperature: -30~+100 °C

• Wavelength: 940nm

• Module size: 13.7mm × 27.8mm

• Module weight: 5g

• Signal type: digital signal

• Infrared center wavelength: about 850nm-940nm

• Infrared emission angle: about 20 degrees

• Infrared emission distance: about 1.3 meters (5V 38Khz)



Using IR Receiver SM0038 (alternative)

• GND: This pin will be connected 
to the ground pin of the Arduino 
board.

• 5V: This pin will be connected to 
the 5 volt power supply pin of 
the Arduino.

• Out: This is the output pin of the 
IR receiver. This pin is connected 
to a microcontroller unit. The IR 
receiver sends the decoded IR 
signal through this pin.



Building an Infrared 
Transmitter Device

• For transmitting IR signals, we 
will have to use special IR 
transmitter LEDs.

• An IR transmitter component 
is in the sensor set



Using an IR Transmitter LED

• Positive terminal (longer leg), 
this pin will be connected to 
the 5-volt power supply pin 
of the Arduino.

• Negative terminal (shorter 
leg), this pin will be 
connected to the GND pin of 
the Arduino, via a transistor.



Components

This is different from the textbook, 
since we use components from the 
sensor kit.

• Arduino Uno R3 with USB cable

• IR transmitter LED component

• Joystick

• Male-to-male jumper wires



Schematic

Left pin (S) = Signal, connect to D3
Middle pin = +5V
Right pin (-) = GND

We do not need the transistor and 
the resistors.



The prototype



Sketch (1)

#include <IRremote.h>

IRsend My_Sender;

void setup() {

// put your setup code here, to run once:

Serial.begin(9600);

delay(3000);

Serial.println("IR sender");

}



Sketch (2)

void loop() {

int i = analogRead(0);

Serial.println(String(i));

if (i==0){

My_Sender.sendNEC(0xFE808A75, 32);

My_Sender.sendNEC(0xFFFFFFFF, 32);

}

if (i==1023){

My_Sender.sendNEC(0xFE804AB5, 32);

My_Sender.sendNEC(0xFFFFFFFF, 32);

}

delay(50);

}



Demonstration



IR receiver on ESP8266

• Different library 
• IRremoteESP8266

• Using built-in LED
• This is connected to GPIO2 / D4

• IR-receiver
• This is connected to GPIO4 / D2

• Can be used together with a web-server



Sketch (1)

#include <IRremoteESP8266.h>

#include <IRrecv.h>

#define LED LED_BUILTIN

#define RECV_PIN 4 //Port for IR-receiver

IRrecv irrecv(RECV_PIN); // Create IRrecv object

decode_results results; // Create object to store results



Sketch (2)

void setup()

{

irrecv.enableIRIn(); // Start the receiver

Serial.begin(9600); // Start serial communications

delay(2000);

Serial.println("Infrared Receiver Started...");

pinMode(LED,OUTPUT);

digitalWrite(LED, HIGH);  // on ESP8266 this is LED off

}



Sketch (3)

void loop()

{

if (irrecv.decode(&results))

{

Serial.println("Result received");

if (results.value == 0xFE808A75) {digitalWrite(LED, HIGH);}

if (results.value == 0xFE804AB5) {digitalWrite(LED, LOW);}

irrecv.resume(); // Receive the next value

}

}



Demonstration



Things to Remember

Remember these important points while using the Arduino platform in 
your future projects.

• The most common frequency to transmit IR signals is 38 KHz (Kilo 
Hertz).

• The TSOP1738, TSOP1838 and SM0038 are responsive to, and can 
detect and decode, IR signals of 38 KHz.

• If you want to decode IR signals of a higher frequency than you must 
use a compatible IR receiver that is responsive to that frequency.

• Use the Arduino IR Library written by Ken Shirriff, to work with 
generic IR components.



Things to Remember

• You must remove the pre-existing IR Remote Library before installing 
the IR Library by Ken Shirriff.

• When using Ken Shirriff's Arduino Library, on an Arduino Uno, only 
digital I/O Pin 3 can be used for transmitting IR signals. This is because 
the library internally changes the frequency of pin 3 and utilizes it to 
send the signals.


